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V SürtlARY 

This paper presents a simple method of allowing for un- 

certainties In tht constant terms (I.e. right hand sides) of 

a linear pzo^rainmlng problem,  and hence producing realistic 

safety margins    In the solution.    This Is done by fitting a 

mixture of uniform distributions to the assumed distributions 

of tnese rlgnt hand sides,  and using a particular quadratic 

programralnp; alsorithm. [   ) 

yO>~ 
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It is «Mil known that lln«ar programing has an unconpro- 

■ising addiction to basic solutions. This moans that It «ill 

urgo us to "go all out" for our objoctivo, and cannot bs usod 

to ootiaato tho "safsty margins" that ofton have to bo provided 

in praetieal oituations to gusrd against uncortaintios of ono 

aort or another. As Oantsig (1956) pointed out, etoehastic 

linear progrs—ing is the theoretical answsr to thli problem, 

bot it dooo not seem to have boon sppliod extensively. This 

is probably boosuse tho computationt involved are usually rather 

hoavy, and the available data on chance effects sre rarely 

ppgoioo enough to support a heavy computation. 

fho pnrpeoe of this paper is to show that an important 

•pooial olaoo of auch problems can be solved fairly easily 

«sing a standard quadratic prograaming algorithm. As far at 

t kMV, this algorithm has not yet been programmed for a computer, 

but X hope that it «ill be in the not too distant future. It 

•Hamid than bo north «nile to feed in eo time tea of the un- 

oortaintioo, and their consequences, into the computations« 

•van if thooe estimstes are quite crude. 

fho olaaa of problems considered here nas been discussed 

by many authorsi Danttl; (1953)* Besle (1955)f Ferguson end 

Santsig (1956). Umaghraby (1959). (I960), Oantsig and Mdanslcy 
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(1900)*  and Nadanslcy  (19(0). 

The norttochtttle version of the model  contains equations 

of the form 

(i) Hi • bi' 

where £*x Is some linear function of the variables of the 

problem,  denoted collectively by the vector x, and t<h*re b- 

la a number that one pretends is »cnown exactly when it really 

la not.    For example.  It may be the volume of sties In some 

future time-period.    The problem is to choose s nonnegative £ 

satisfying all theae equations so as to minimise some linear 

function c'x. 

In the stochastic version of the model,  the b.  are regarded 

aa random variables with known probability distributions.    The 

vector ^ has to be chosen before we icnow the actual values of 

the b.;  but we are no longer required to aatiafy the equations 

(1) exactly.    Instead we have a penalty of f~(2 0) for each 

unit by which g'x falls snort of b-, and a penalty of fJX^ 0) 

for each unit by which zJx exceeds b.,   to be added to tte direct 

cost c*£.    This penalty may represent a  tangible loss,  such aa 

failure to sell  one's goods because tne demand is Inadequate, 

or an Intangible loss  of  goodwill  caused  by  failure to meet a 

requlrement,  or a comblratlon of the two.    The problem Is  then 

to cnooae a nonnegativa x that minimizes the expected total  £ost 

■ 

(a) T - £'x ♦ Tf^ 
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where f. denotes the mean value of the penalty Incurred on 

the l-th equation. To  represent f   mathematically« we write 

(1) in the form 

(3) 

and 

(5) 

!• fit 
«i« - 'i " bi' 

yl " 'l - 'l' 'l ^ 0' 'l 2 o. 

tiq ,- ♦ t fp 

\ 

In practice there will often be no penalty coat If y^ > 0, 

ao that ff • 0. The nonatochaatlc model would then normally 

appear in the form g^c 2 bi • 

In fact It la convenient to reduce the general problem 

to one with f^ • 0» by adding f* times equation (3) to equation 

(a). Ve then have 

(6)   »--»t*r*u*ftii),«*}»i 
allere S. denotes the mean value of b., and 

(T) r^ - i((*t ♦ ^P- 

It la perhapa wortn noting that, although we have aaaumed 

that fj" and f^ are both nonnegative, we really only require 

that f^ ♦ fj be nonnegative to Justify the mathematics. 
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(8) 

Given a problem with r    • 0,  It It convenient to write 

Fi - && 

and to refer to y.  as the safety margin, or margin.  In the 1-th 

constraint.    The essential contribution of the stochastic 

feature of tht model Is to provide a means of estimating proper 

values for these margins.    In the nonstochastic model they art 

zero on all the operative constrainta. 

Another general point to be noted Is that the correlations 

between different b.  do not enter the problem.    They have no 

effect on the mean value of the penalty cost — although of 

course they could have an appreciable effect on its variance. 

%     KXISTIliO WBTH0D8 OF S0LÖTI0W 

Methods for solving these problems are known.     If all the 

probability distributions are discrete, any 2-ttage linear 

programming problem can be reduced to a vast linear programming 

problem, which can nevertheless be solved using the decomposition 

principle of Dantzlg and Wolfe (I960),  as Dantzig and Nadansky 

(I960) have pointed out.    The simple type of penalty  coat con- 

sidered here Is easier than this.     It leads Immediately to a 

convex separable nonlinear objective function,  which can be 

handled by the metnods of Chames and Lemke (195*). 

Rlmaghraby   (i960) has suggested that a continuous dis- 

tribution  function  could be handled using the lAgrangian differ- 

ential gradient method of Hurwiez  (1957).    But tht 
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Halted cooputational Mperltnce with these »ethoda Is not 

very eocoureglng. 

||    Tfg PR0PQS1D M1THQD OF SOLUTIOM 

Hie starting point for the approach proposed here la the 

fact, noted bgr Dantzlß (1955), that If the random variable 

b^ haa a unlfora (rectangular) distribution over aonc specified 

ranee then the objective function la quadratic,    ihla follows 

fro* the fact that (aaauMlng f+ « 0), d?x/^fi equals alnua f^ 

tlaea the probability that y1 < 0.    In fact we find that If 

b^ la mlfonaly distributed between ^ - ^ and S^ ♦ r^» then 

P. - 0 

0 
dt 

--^»1 

If 

If 

If 

'l 2 «-i- 

\<yl< ^ 

»iS 
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This function,  plotted against y.,  looks as   follOMS 

And It  turns  out  that   this  function  can be represented very 

simply,   by writing 

(9) r.   «f x,,  - 11      ^1       ^1 

xll   - 0'   x21 2 0»   ^i   > 0J 

(io) P1 - r" (x^ ♦ Ai/^i)- 

In other  woMs the coratralnts   (1) or (3) are replaced by 

(in •* - iii    xii * "a * xji ol   ♦  tj, 

and  {2)  Is replaced by 
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(12) *» Z'l+Y^l  * X31/4^l,• 

To verify these formulae, first consider tne situation 

when y^ > r. .  Then it is clear that we can put au- • x-. • 0, 

and P. * 0, as it should be. Now suppose that y, < r.. Then 

we cannot put JU* • x.. • 0« and P. will have to be greater 

than zero. But we would be crazy not to put x,. ■ 0, since a 

positive Xj. would involve an unnecessarily large x^.  or x^* 

at some extra expanse and no benefit. So we put x.. • 0 and 

make up the difference between y« and r. by x^. + \ . Now 

dP^/^Xg^ ■ tT,  and ^P«/^^! • rl,L5^'^^l• So» if m ****  t0 

Increase x^. ♦ .x_., it is cheaper to increase x-^ if x.. < 2r., 

and otherwise it Is cneapar to Increase Xp.. Hence, as y. 

decreases from P.i P^ increaaes quadratically to r. when 

y^ • -r*. and thereafter p1 increases linearly. In fact f Is 

represented faithfully in all cases. 

If it is more corvenjant, we can handle a problem with 

fj / 0 directly, by writing 

(13) fg  - f^  ♦ q^ - fjx31 ♦ (f^ 4 V^ATi- 

The problem of minimizing T subject to these  constraints 

la a typical quadratic programming problem in which the number 

of quadratic terns equals the number of constraints with random 

right hand sides,  which is almost certainly much smaller than 

the total number of variaolea in the problem.    T^e problem is 
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therefore suited to the algorithm outlined on pp.  255-236 of 

Beale  (1959).    This Is essentially the algorithm presented by 

Beale  (1955) and more fully in Beale (1959).    ft* only difference 

Is that    the objective function Is stored,  not as a vast square 

matrix,  but as a set of (rfl)  linear forma  XQ,  X.,   ...f  X , 

It beln^ understood tnat 

So we can deal with uniformly distributed right hand sides 

fairly easily.    In some  situations we may know so little about 

the true distributions of these right hand sides that such an 

assumption Is as good as any.    But In other situations this 

will not  be very satisfactory.     For example,  suppose we have 

a production scnedullng problem In which sales are treated as 

random variables,  but we wish to lay down  the production schedule 

In advance.    Then the nonstochastlc model will  contain some 

constraints of the form 

lO**l > 3i' 

I0 ♦ Rj ♦ 1^      > ^ ^ S2 

representing tne facts  that Initial Inventory plus total pro- 

duction up to the end of any time—period »nuat not be less than 

total  sales up to the end of the time-period.    Now we might 

possibly assume that S*   has a uniform distribution.    But It 

would  iiardly be consistent  to assume t .at 3^ + % also oad a 

uniform distribution. 
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but It is often Illuminating to compare different approaches 

wltr. reference to a specific simple class of problems. 

One difference is that the 2-stage program minimizes tue 

total cost,  consisting of a direct cost and a penalty cost 

representing the average level of failure to satisfy the original 

Inequality constraints.     In chance—constrained programming one 

pre-selects a tolerable long-term    failure level,  and simply 

minimizes the direct cost without exceeding this  failure level 

on the average.    Such an approach may be advantageous If the 

penalty costs are hard to assess  quantitatively.    Fo." our pro- 

blem it can easily be Incorporated into the 2-8ta'r,e model by 

using parametric programming.    As Beale (1939)  Indicates, 

parametric quadratic programming is straightforward as long as 

the parameter is confined to the right hand sides and the linear 

part of the objective function.     To apply it in this context 

we must therefore ^eep the penalty cost function fixed,  and 

gradually scale down the direct cost to represent a gradually 

Increasing relative Importance to be assigned to failure. 

Corresponding to each parameter value,   one can coiTipute tae 

direct cost and the average level  of infeaslbility,  measured 

by the average penalty cost Incurred.    One can then select that 

parameter value  corresponding to the selected tolerance for 

Infeaslbility. 

But the more fundamental difference between 2-«tage and 

chance-constrained programming is that, for any given values 

of the variables and the random elements,  the infeaaibility is 



12 

measured In ^nancc—constrained programmln»; essentially by the 

number of constraints that are violated, and not by the extent 

to which they are violated.  (Actually this Is an oversimpli- 

fication.  Violations of some constraints may have to be re- 

garded as more serious than violations of others, to allow the 

overall probabilities of violating different constraints to 

balance In an optimum program.) The question of which of these 

Is the more reasonable measure must depend on the application. 

Madarsky (i960) suggests an alternative form of chance-con- 

strained programming In which the Infeaslblllty Is measured by 

whether or not all the constraints are satisfied simultaneously 

To apply this to our problem, we would need to lenow tne Joint 

distribution of all tne random variables, whereas tne marginal 

dlstrlbutlors suffice for tne other approaches. 

It Is possible to compromise between our formulation of 

tr.e problem and cnance—constrained programming, by accepting 

our measure of irfeasibillty, computing the parametric family 

of optimum solutions for different relative weights on cost and 

feasibility, and then selecting from this family the solution 

witn a specified average total number of violated constraints. 

In some circumstances this night be a very practical procedure, 

i^lvln? an easily ronpreherslble 1;' Indirect control over the 

level of Infeaslblllty. 

__ 
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APFPfPIX 1 

APFÄOXIMATII« A  SYWOTÄICAL DISTHIBOTIOM BY A 
WXTÜW OP USfIPOfW OTSTRIBOTIOIfS 

To apply the methods of Section 4,  the assumed distribution 

Tor the random variable b must be approximated by a mixture of 

a small number of uniform distributions.     It Is natural to use 

the method of moments to define tnls spproxlmstlor..    This Is 

a soaMwnat arbitrary aeclslor.#  but It seems natural, because 

(a)    the moments of the given distribution can usually be 

readily evaluated,  and 

(o)    It tends to empiaslse the tails of the distribution, 

where a good fit la moat Important. 

The problem Is greatly simplified If b    has a symmetrical 

distribution.     It Is then clear that we should make t e mean 

of each component equal to the mean of the dlatrlbutlor,  and It 

only remains to choose the proportions p.  and half-ranges r. 

to be allotted to the different   components.     VIth k  components, 

we can fit up to the  {4k - 2)~th aocent, and the equations to be 

satisfied are as follows: 

X». 

-"l < 

^ < 

^l ■r -2) 

1 
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where ^.  dcnotec the 1-th ooaent about the mean of the (cymetrie) 

distribution beln^ fitted. 

Writing rj • X1# (21 ♦ 1)^21 " vi* *e  find that our 

equations reduce to 

^1 Ai 

'-yl Al 

- 1 

2ifr-r 

There are the standard fonsulae for the weights and 

ordlnates for Qiuso-type quadrature fonoulae.    For convenience 

we record the solutlonu for i: • 1, 2 or 3. 

If k • 1,  Xj • v., r1 - 1. 

If k • 2, \^ and X^ arc the roots of the quadratic equation 

and 

x 

v 

x 

v. 

1 

1 0, 

P2 -  (v1 - X1)/(X2 - X1). 

If k ■ 3, X,,  X0 and X- are the i^oots of the cubic equation 



15 

«nd 

x 

¥ 

V 

3 

3 

x 

V 

2 

2 

x 

V, 

1 

1 

V, 

0. 

P2 - (»2 - VX1 ♦ ^3) ♦ hW2 - ^»S - ^3^ 
P3 - 1*2 - vl(^ ♦ ^3) ♦ V2)/(X3 - Xl)<X3 - X2)- 

For a noroftl dlatrlbution with variance a2, v1 . i.3a
2
# 

v2 . I.**,  V3 . x.a.s.Ta
6. v4 . 1.3.5.7.9a

8
# ^ . 1.3.5.7.9.11a10, 

•nd we have the follcirlng reaultfl. 

k 

1 

2 

^1 

1 

0.1838 
0.6162 

0.0154 
0.3446 
0.6400 

1.73210 

2.85700 
1.35^6ö 

t'fiffi 

»• fltt«! fr«iu«,cjr ftmctloo« »re plott«! in n«. 1. 

Md the reBultln« aver«*? penalty coata, aaawlag o - 1, r m l 

fj - 0. a» plotted on a logartui-lc scale in ng. 2.    tt «u ' 

»• a^n that the BU«I« unlfoi» dlatplbutlon (k . i) ^»,, , 

»«T «d^wate fit for -«,81«. i,M u^ „. ^ ^c.,«^,,. 

HMH 
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the penalty for larger margins.     The mixture of 2 unlfom 

dlstrlbutlcna   (k • 2) glvee an adequate  fit for margins  leas 

than 2.50,  and this should be satisfactory for most practical 

purpoaes.     The improvement  obtained by talcing a third  component 

(k « 3) is not  spectacular.     One gets an adequate  fit  right 

out to 2*30,  but there is an awKward trough in the curve around 

2.3o where the penalty is underestimated by Mtf.     Ttiis la per- 

haps because  the tenth moment,  which is used to fit  t   Is mix- 

ture,  gives too much weight to the extreme ta*ls  of the dis- 

tribution.    A better fit over a aomewhat ahorter range of 

margins could perhaps be obtained by  fitting the moments  of 

a  truncated normal distribution. 
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APFBIDIX 2 

APPROXIMATIMO AM ÜN^YlifETRICAL DI^T^IBÖTIOH 
BY A wrnmi OP mifom DISTRIBOTIOIIS 

Tht problem of fitting « mixture of uniform distributions 

by the method of moments to sn unsymmetrlesl distribution seems 

to be much more swkwsrd than fitting s symmetrical distribution. 

We now have to choose 3 parameters for each component:    the 

proportion p^,  the mean it^ and the half-range r*.    With k com- 

ponents we can therefore fit up to the  (31c - l)-th moment. 

Without loss of generality we can assume that the mean of the 

distribution to be fitted Is zero. 

Ita r-tn moment  of the mixture Is given by 

«Tri&Tr, l<"i ♦ri) ̂ -K  -r,)^1). 

If ur denotes the r~th moment about the mean of the distribution 

to be fitted, we therefore obtain the following equations for 

fitting 2 componentst 

f pi"i 

♦ P2 

P1(m1 ♦ 2m^r^ ♦ 5 Tj) ♦ p2(in^ ♦ 2«|rj ♦ 5 r^) - ^ 

P1("f ♦ y mjrj ♦ m1rj) ♦ p2(m| ♦ J^ a^r^ ♦ mgr*) - ^ 

m   1 

- 0 

•»a 

*3 
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There does not seem to be any neat way of solving these 

equations.  But we car. tackle them by solving the first 2 

equations for p, and p. In terms of m, and rrU' substituting 

these values Into the 5-rd and 4—th equation and solving for 

2     2 
r, and r2 In term? of m. and rru, and tnen substituting all 

tf ese values Into the 5-th and 6-th equations to detemlne m, 

and rru.  We find that 

(A2.2) p1 - -m^/Cmj ~ r^). p2 - nyCuij - mg) 

(A2.3)  ri * (- ^ ♦ ^ ♦ ^l1^ " ml^ r2 " (" . ♦ ^ ♦ ^i"^ " *%) 

When we substitute these values Into the last 2 equations 

of (A2.1) It Is convenient to write 

(A2.M X,   • m,  + ,  ♦ITU,     X2*iniTU 

The equations then reduce to 

(A2.5) A10 ♦ AJJXJ ♦ A12X^ 

where 

- 0 

(A2.6) A20 ♦ A21X1  ♦ A22>j   ♦  A23>J - 0, 

A10 - ^ ♦  (9U2  - ^V, - 12u2X^ - 16X| 

All  - * *l\ 

A12   "  ♦ 4X2' 



! I^MBügs ■ '^»iPPPifWF       ■      ■■^pa»»« ' 

^o- dfV, 
-*'5>X2 ♦M 

Si- -^- 
12^*1- 16*1 

*22- ♦s»* 
«w- ♦ »»I. 

19 

We can manipulate these equations to solve for X.  In 

terns of K, and obtain tne formula 

Finally,  substituting this back Into (A2.3) we obtain a 

sextlc equation for X^,  which can be written as 

(A2.8)    a0 ♦ ajXg ♦ a2^ ♦ a^ ♦ a^Ä* ♦ a5x| ♦ R^ . o. 

where 

'o - »S 
2 « 

•j - 16^u5 - 2^ > 9fl|»|^l»4 - 768u2u* - 81,4^. 

^ - 2«*5^145 - *32U^U5 - 125nJ «. 675l4u^ - 1200^^ 

- W*4»4 - 1281^ ♦ 2160^ * 729,42' 

♦ 724i2u| - 972|i^. 
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a6 - 2564. 

The suggested cor.patatlonal procedure Is therefor« as 

follows} 

1. Compute the coefficients of (A2.8), and find a negative real 

root of the equation.  If there are no negative roots, then the 

problem Is Insoluble.  If there are any, then there must be an 

even number.  It seems likely tnat the smallest In absolute 

value will be appropriate, but this is not exactly clear. 

2. Given the value of X^, deduce X. from (A2.7). 

3. Find the roots of the quadratic equation 

2 
x - X.x ♦ X2 • 0. 

These are m, and nu. 

o      p 
4. Deduce p1, p^, ^ and r^ from (/12.2) and (A2.3). Since 

X» < 0, m. and m must have opposite signs, so p, and Pp are 

2    2 
certain to be positive.  But r, or r^ might prove to be negative, 

indicating that UM problem ha» no solution, at least for t. la 

value of Xp. 
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